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Digital simulations were applied to generate potential–time response curves for cyclic
chronopotentiometry under a constant current in order to gain insight into a reversible
charge transfer process at a planar electrode under semi-infinite diffusion conditions. These
simulations were carried out for two-species systems in which either both or just one com-
ponent undergoes adsorption, and this process can be accurately described using the Henry
isotherm. From the chronopotentiometric curves obtained, and following their numerical
differentiation, the corresponding cyclic reciprocal derivative chronopotentiometric curves
were generated and compared with the previously reported analytical solutions. The results
obtained according to the proposed simulation scheme were shown to be in perfect agree-
ment with the analytical solutions. It was also demonstrated that digital simulations are a
powerful and versatile tool for studying and modeling two-species adsorption systems.
Keywords: Digital simulation; Cyclic chronopotentiometry; Cyclic reciprocal derivative
chronopotentiometry; Adsorption; Electrochemistry; Diffusion.

Over the last decades, cyclic chronopotentiometry and cyclic reciprocal de-
rivative chronopotentiometry (CRDCP) have received wide attention1.
These methods, both in their constant- and programmed-current versions,
have been used to study electrode processes, reaction mechanisms, and a
plethora of surface phenomena such as adsorption, deposition, passivation,
electrochemical corrosion, etc.2–9. Recently, it has been suggested that re-
versible electrode processes can be studied using a new method of current
programming, unsymmetrical cyclic reciprocal derivative chronopotentio-
metry10. In this method, the current amplitude for consecutive current
steps changes in such a way that the successive transition times are equal to
the first transition time. Although CRDCP and classical cyclic voltammetry
(CV) curves are superficially similar, the former are by far analytically more
useful. It stems from the fact that the peak height on the dt/dE = f(E) curve
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(i.e., on the CRDCP curve) increases as the applied current decreases, thus
ensuring that the ohmic drop effects are negligible. Moreover, capacitance
effects do not have to be considered in the theoretical description of
CRDCP because the appropriate curve parameters are generated from the re-
gions of CRDCP curves for which potential changes, dE/dt, are small. In
contrast to CRDCP, one needs to work at high sweep rates to improve the
peak high in CV, which leads to an enhancement in the distortion of the
I/E curve as a result of the increase of the ohmic drop effects11,12. In a series
of papers Bi et al.13,14 presented and tested on real electrochemical systems
a simple electronic simulator designed for CRDCP which can be used both
in theoretical studies and practical analysis.

The main purpose of the present research was to study, by computer sim-
ulation of analytical equations describing both potentiometric curves, E =
f(t), and CRDCP curves, dt/dE = f(E), two-species systems in which adsorp-
tion of the reactant and/or product occurs. Because peak parameters of the
dt/dE = f(E) curves are responsive and sensitive to the occurrence of adsorp-
tion in a studied system, they have been successfully applied to investigate
such phenomena3. They can also provide useful information on the num-
ber of species undergoing adsorption and make it possible, by comparison
of experimental and theoretical curves, to calculate the relevant adsorption
parameters. It should be noted, that in contrast to the analytical equations,
presented simulation scheme gives a possibility to obtain concentration pro-
files of all species at any time of experiment. Besides, the proposed simula-
tion scheme can be easily adapted to modeling cyclic chronopotentiometry
and CRDCP with a programmed current of any form.

For many years, digital simulations have been widely used comple-
mentarily to both theoretical studies and classical experiments in which
diffusion plays an important role. The development of computer simula-
tions over the past decade has been presented in a recent review15 and a
monograph16.

THEORETICAL

In a series of papers, Molina et al.2,3 have introduced and tested general ana-
lytical equations describing changes of the surface concentration of the oxi-
dized (A) and reduced (B) species at a planar electrode during consecutive
cycles of a chronopotentiometric experiment. These equations have been
derived in accordance with the superposition principle while, at the same
time, taking into consideration the following assumptions2:

a) Charge transfer reaction described by Eq. (1) is reversible.
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A + ne ⇔ B (1)

b) Adsorption of the species can be described using the Henry isotherm,
Γi = Kici(0,t), with adsorption constants, Ki, being independent of the elec-
trode potential within the range in which the experiment is conducted.

c) Both the surface excess, Γi, of the reactant (A) and product (B) as well
as their volume concentrations are continuously in equilibrium, i.e., the
adsorption process is so fast that it is limited only by the diffusion-
controlled mass transport, and not by the rate of adsorption.

It was also arbitrarily chosen that the odd current steps (j = 1, 3, 5...) were
cathodic. Conversely, the even current steps (j = 2, 4, 6...) were chosen to
be anodic.

Equations (1) and (2) presented by Molina et al.3, describing the change
in the surface concentration of species A and B, c ti

j
, ( )0 , during the j-th cur-

rent step while in the following (j + 1)-th step the electrode is polarized
with the current of the same value but of the opposite sign, i.e.,
I Ij

j= − +( )1 1
0 (the symmetrical programmed current according to the classi-

fication introduced elsewhere10), can be transformed as follows:
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where

Z I nFAc D ii i= =2 0 1 2/ ( ) ./
A A, Bπ (3)

Obviously, if the diffusion coefficients, Di, for the two species are equal,
then ZA = ZB.

χ n j
i

i n j iD t K i, ,
/( )= =−1 2 1 A, B (4)
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t t n jn j k j
k n
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, = + <
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t tj j j, = (6)

µ = c cB A
0 0/ (7)

where τk is the cathodic (k odd) or anodic (k even) transition time corre-
sponding to the k-th current step applied; tj is the time that passed since
the beginning of the j-th current step; ci

0 is the starting concentration (i.e.,
at t = 0) of the i-th species in solution; A is the electrode area; F, n, and I re-
tain their customary meanings.

The total time, t, of the experiment is given by

t tk j
k

j

= +
=

−

∑ τ .
1

1

(8)

The H(x) function present in Eqs (2a) and (2b) is described by the follow-
ing equations2 (after the upper limit of the product in the numerator of the
first formula was adjusted as presented in Eq. (9)):
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p
i

ii = +
+

2 1 2
1 2

Γ
Γ

( / )
(( ) / )
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In Eq. (10), Γ is the gamma function.
The H(x) function has the following limiting values17:
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The values of the H(x) function can also be calculated from the following
formula3:

H x x x x( ) ( / )( exp( ) ( ))/= − −1 2 11 2 2π erfc (12)

where erfc (x) = 1 – erf (x) is the complementary error function and erf (x) is
the error function.

The dependence of the electrode potential, E, on the duration of the j-th
current step (i.e., the chronopotentiogram) can be obtained by merging
Eqs (2a) and (2b) with the Nernst equation:

( )E t E RT nF c t c tj j( ) º ( / )ln ( ) ( ), ,= + A B0 0 (13)

where Eº is the standard potential, R is the gas constant, and T is the abso-
lute temperature.

It should be noted that the equations introduced by Molina et al.2,3 make
it possible to calculate the concentration of species A and B on the elec-
trode surface. However, they are not suitable for the determination of the
concentration profiles for species A and B in the bulk solution for any mo-
ment during the experiment.

Simulation Method

The simulations were carried out using the point method, which is based
on finite-difference approximations of derivatives in Fick’s second diffusion
equation16 with equal intervals of both (dimensionless) time T , (0, δT , 2δT ...)
and space (0, h, 2h...).

Because in digital simulations it is convenient to normalize all variables
(in order to obtain more general and useful solutions), in the present re-
search this normalization was performed in accordance with the method
described, among others, by Britz16 and Bieniasz18, namely:

C c ci i= / A
0 (14)

D D Di i= / A (15)
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K K Ki i= / A (16)

X x D= /( ) /
A τ

1 2 (17)

I I I I nFAc D= =/ //
norm A A

1/2τ1 2 0 (18)

T t= /τ (19)

p E E nF RT= −( º )( / ) (20)

where Ci, Di , Ki are the dimensionless concentration, diffusion coefficient,
and adsorption constant of i-th species, respectively; x and X are the
dimensioned and dimensionless distances from the electrode, respectively,
and I , p are the dimensionless current and potential, respectively.

In Eqs (17), (18), and (19), τ is some fixed experimental (observation) time
(i.e., the reference time scale). For simulations of chronopotentiometry, it is
commonly recommended to take τ equal to the transition time obtained
from the Sand equation (i.e., for an uncomplicated, fully reversible charge
transfer reaction under pure diffusion conditions)16. Needless to say, the
above described strategy cannot be effectively applied to systems in which a
species undergoes adsorption. For such systems, even the first dimension-
less transition time, τ1 , would be much higher than the unity (see, for ex-
ample, Tables 1–3 in Molina et al.2 and Tables 3–5 in Molina et al.3).

The total (dimensionless) time of the simulation experiment, Ttotal , is
equal to:

T ti
i

j

total = =
=
∑ τ τ

1

/ (21)

where τ i = τi/τ is the i-th dimensionless transition time.
The size of the simulated system cannot be smaller than the thickness of

the diffusion layer (multiplied by a small factor, most frequently 6), i.e.,
6 1 2( )max

/D Ttotal (where Dmax is the maximum dimensionless diffusion coeffi-
cient of all the involved species). Therefore, for large values of Ttotal , the
simulated system must also be large. This, in turn, renders the correspond-
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ing simulation excessively time-consuming. This is especially apparent dur-
ing digital simulations of multicyclic processes that are the subject of the
present studies. To circumvent this serious practical obstacle, we assumed
that the observation time, τ, was equal to the first transition time for the
adsorption system studied, i.e., τ τ= 1

ads . Its relation to the adsorption con-
stant is given as follows2:

( )( )
( )

( )
/

/

/
τ

π
τ1

1 2
0 1 2

1
1 22

ads A A

A
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A
–1

A
–1

= =
nFAc D

IH D K

Z

H( )( )
.

/D KA
ads

A
–1τ1

1 2
(22)

Taking into account Eq. (11), it is apparent that, for KA → 0, Eq. (22) con-
verts to the Sand equation. It also needs to be pointed out that, when the
observation time, τ, is selected according to the method described above,
i.e., τ τ= 1

ads , the dimensionless current, I , can be given as

( )I
H D K

= π
τ

1 2

1
1 22

/

/( )A
ads

A
–1

(23)

which is a direct consequence of Eqs (18) and (22).
The dimensionless current, I , defined in this manner, reduces (but only

when KA → 0, i.e., the charge transfer occurs under pure diffusion condi-
tions), to the familiar value of π/2 (i.e., to the dimensionless current un-
der pure diffusion conditions).

Thanks to such a choice of the reference time scale, τ τ= 1
ads , the first

dimensionless transition time, τ1 , for any adsorption system is reached (or,
at least, should be reached) during the simulation after T = 1. This is analo-
gous to simulations of chronopotentiometry under pure diffusion condi-
tions for which the observation time, τ, is taken as the transition time
obtained from the Sand equation. The only inconvenience, albeit small, as-
sociated with the method of selecting the observation time that was used in
our studies is related to the fact that τ1

ads is present on both sides of Eq. (22).
As a consequence, its value has to be determined numerically, for example,
by the bisection method. It is especially important for those who would like
to correlate the dimensionless results of their simulations with the parame-
ters measured for real systems.

In the present simulation scheme, partial differential equations (PDEs), as
well as initial and boundary conditions, comprise the basis of any simula-
tion. PDEs, for which the solutions are given by Eqs (2a) and (2b), when ex-
pressed with dimensionless variables, are as follows:
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a) Governing PDEs (second Fick’s law):

∂
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∂
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where d = DB/DA.
b) The initial and boundary conditions2:
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where ′ ′K KA B, are the coefficients resulting from normalizations

( )′ =
−

K K DA A A
adsτ1

1 2/
(27)

( )′ =
−

K K DB B B
adsτ1

1 2/
(28)

and are related as follows:

′ = ′−K d kKB A
1 2/ (29)

where

k = KB/KA . (30)

As it can be noted, certain derivative boundary conditions, Eq. (26), are
present in our model. The commonly known problem, associated with the
classical Crank–Nicolson (CN) scheme utilized in our work as well, is re-
lated to difficulties arising when the boundary conditions are given in such
a form16. To overcome this obstacle, we used a modified algorithm of the
CN scheme in which implicit forms of the boundary conditions, Eq. (26),
are included. This particular scheme involves incorporating concentrations
on the electrode surface at the time T T+ δ (which are, at that particular
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moment, yet unknown) into the implicit equations generated when using
the CN method16,19,20.

Discretization of Eqs (24) was carried out in the usual manner as detailed
elsewhere16:

′ − = − + + ′ − ′ +− + −C C C C C C Ci j i j
i

i j i j i j i j i j, , , , , , ,(
λ
2

2 21 1 1 ′

= =

+C

i j m

i j, )

; ,

1

1A, B

(31)

where λ δi iD T= /h2 (h ≡ δX is the space interval along x); Ci,j are the known
concentrations at the time T , whereas ′Ci j, are the new, yet-to-be-established
concentrations of the i-th species in the j-th point of the space grid at the
time T T+ δ , and m is the number of points in the space grid.

In order to discretize the right-hand sides of Eqs (26), the following two-
point formula was used:

∂
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T
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The concentration gradient of the i-th species at the electrode at time
T T+ δ , ′ = ′G Ci i( ,∂ 0 /∂X), was discretized using the following five-point for-
ward approximation:
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By combining Eqs (26), (32), and (33), the following equations were obtained:
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Equations (34), in combination with the first four equations of the set
(31), made it possible to determine the implicit new concentrations of
species A and B at the electrode, ′CA,0 and ′CB ,0 , respectively. With these concen-
trations established, solving the set of Eqs (31) leads to the new concentration
profiles (at the time T T+ δ ) for species A and B. As it can be seen, the computer
simulations provide the entire concentration profile for the i-th species at any
given time. This cannot be accomplished when the analytical equations
proposed by Molina et al.2,3 are used.

For the simulated systems, at the beginning of the simulation (T = 0), the
initial concentrations of species A and B were set as follows:

C X T C X T XA B for all( , ) , ( , ) .= = = =0 1 0 µ (37)

Next, for any subsequent time step, new concentration profiles for spe-
cies A and B were calculated. With the new concentration profiles in hand,
the dimensionless potential, p, was determined in accordance with Eq. (38):

[ ]p T C T C T( ) ln ( ) / ( ) .= A,0 B,0 (38)

The above equation was obtained by applying the normalization rules ex-
pressed by Eqs (14) and (20) to the Nernst equation, Eq. (13). The simula-
tion of any given current step was carried out until ′CA,0 (for odd values of j)
or ′CB ,0 (for even values of j) became non-positive. Because it was very
unlikely that a simulation of any given current step would terminate when
either ′CA,0 or ′CB ,0 was exactly zero (obviously, most of the time it was nega-
tive), and in order to avoid a situation where at the beginning of the next
current step either ′CA,0 or ′CB ,0 was negative, the entire concentration pro-
files were interpolated in such a way as to ensure that the next (j + 1)-th
current step would commence with ′CA,0 = 0 (for odd values of j) or ′CB ,0 = 0
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(for even values of j). The dimensionless transition time, τ j , determined
during the j-th simulation, was adjusted in an analogous manner.

In the present studies, all the simulations were carried out using the pa-
rameters d = 1 (i.e., for equal diffusion coefficients for species A and B), λA =
λB = 5.0, and δT = × −10 10 4. .

Validation

In order to compare the results of our simulations with those obtained by
Molina et al.3 based on Eqs (2a) and (2b), it was necessary to present these
equations in the dimensionless form. The normalization was carried out using
the transformations depicted in Eqs (14)–(16), (18), and (19). After Eqs (22)
and (23) were also taken into consideration, the following equations were
obtained:
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j j

j
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for ′ >KA 0 and ′ >KB 0 (39b)

where T tn j n j, ,= /τ1
ads , T T j= 1, . For t n j, , see Eq. (5).

Because Eqs (39a) and (39b) are valid only for the positive values of ′KA

and ′KB (strictly speaking, Eq. (39a) is also valid for ′KB = 0), it was necessary
to use the limiting values of the H(x) function set in Eq. (11) in order to arrive
at equations describing the surface concentrations of the species that does
not undergo adsorption ( ′ =Ki 0, i = A, B). Taking the above into account,
the following equations were obtained:

C T T Tj
j

j
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n
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/

,
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

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
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∑1 2 11

1 2 1 1 2

2

for ′KA = 0 and ′ ≥KB 0 (40)
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2 1
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RESULTS AND DISCUSSION

For the sake of simplicity, we introduced a classification of the adsorption
systems studied. If in a given system, both species A and B undergo adsorp-
tion, such a system is assigned to be of the AB type. Analogously, when ei-
ther species A (but not species B) or species B (but not species A) undergoes
adsorption, such a system is assigned to be of the A or B type, respectively.

In order to check the accuracy of our digital simulation scheme, a wide
range of simulation calculations were carried out. The simulation parame-
ters were selected in such a way that would enable us to arrive at the re-
sults, including consecutive transition times, full chronopotentiograms,
CRDCP curves and their parameters, analogous to those presented by
Molina et al.3 To demonstrate the effectiveness of our computer simulations,
the calculations were performed for the first 25 full cycles (i.e., 50 conse-
cutive current steps) for adsorption systems of all the three types described
above. Although Molina et al.3 presented their results for the first cycle
only (i.e., for a sequence of one cathodic and one anodic step), we carried
out our own calculations for 25 cycles based on the analytical equations
(38), (39a), and (39b).

The AB-Type Adsorption Systems ( ′KA ≠ 0 and ′KB ≠ 0)

In Table I, the analytical calculation (dimensioned) parameters and the
corresponding simulation parameters for the AB-type adsorption systems
studied are summarized. In addition, the parameters for systems in which
neither species A nor B undergoes adsorption, i.e., the systems character-
ized by the reversible charge transfer under semi-infinite diffusion condi-
tions, are also presented. Throughout the manuscript, we attached the
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“diff” tag to such systems. The parameter Ω = Γ0,B/Γ0,A used by Molina et al.3

and the parameter µ are related in the following manner:

Ω = kµ (42)

where Γ0,A and Γ0,B are the surface excess of species A and B, respectively, at
the beginning of the experiment.

It can also be noted that Eq. (42) is true only when k ≠ 0.
The analytical calculations were based on Eqs (39a) and (39b), with the

time increment δT = × −10 10 4. . As it was the case for our digital simulations,
a present current step was terminated when either ′CA,0 (for odd values of j)
or ′CB ,0 (for even values of j) became non-positive. Similarly, the calculated
transition time was subsequently adjusted in such a fashion as to ensure
that the corresponding concentration of an appropriate species was exactly
zero at the end of a given step. Needless to say, the concentration of the
other species was also adjusted by assuming that changes in the concentra-
tion of the two species were linear over the time period equal to δT . The
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TABLE I
Analytical-calculation parameters and corresponding simulation parameters for AB-type
adsorption systems

ZA = ZB = 3s–1/2

DA = DB

Ω = µ = 0 and Ω = µ = 0.5
d = 1 k = 1

Simulation parameters

τ 1
ads

Eq. (22)
′KA = ′KB

Eq. (27) and (28)
I
Eq. (23)

Diff 0.333333 0.000000 0.886227

1 0.779855 1.282290 2.073385

0.1 2.088585 4.787930 5.552882

0.05 2.889617 6.921333 7.682568

0.01 6.276829 15.931612 16.68808

D D

K
A

A

B

BK
= , s–1/2



calculations for the systems in which neither species undergoes adsorption
(i.e., the “diff”-tagged systems in Table I) were based on Eqs (40) and (41b).

In Fig. 1, the calculated relative transition times, τ ref , obtained from the
simulations and analytical equations (39a) and (39b), for the AB-type ad-
sorption systems (µ = 0) are compared. Figure 1a-2 shows the dependence
of relative transition times, τ ref , on the current-step number, j, for the
AB-type adsorption systems studied (µ = 0), whereas Fig. 1a-1 shows the
changes of the err function (see Eq. (44)) with the current-step number, j.
The relative transition time, τ ref , and the err function are defined as follows:

τ
τ τ
τ / τref

for odd values of

for even values of
=
 j

j

j

j

/ 1

2



(43)
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FIG. 1
Cyclic chronopotentiometry. Comparison of changes of relative transition times, τ ref , accord-
ing to Eq. (43) (Fig. 1a-2) obtained from analytical equations (39a) and (39b), (� for odd values
of j, � for even values of j) and simulation results (� for odd values of j, � for even values of j)
for AB-type adsorption systems (µ = 0). Dependence of the err function values according to Eq.
(44) from the current-step number, j (Fig. 1a-1). Values of D K D KA A B B/ /= in s–1/2 are in-
cluded on the graphs. Diff curves correspond to a pure diffusion process. Analytical-calculation
and simulation parameters for systems depicted here are summarized in Table I. For clarity,
only selected τ ref = f(j) curves are presented

a-1

a-2



err (j) = ( )log τ τ τj j j
calc sim calc− (44)

where τ j
calc and τ j

sim are the j-th dimensionless transition times obtained from
the analytical equations (calc) and simulations (sim), respectively.

In Fig. 2 are presented the dimensionless chronopotentiometric and
dimensionless CRDCP curves (the first cycle, i.e., the first cathodic and an-
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FIG. 2
First cycle of cyclic chronopotentiometry and CRDCP. Comparison of potential–time response
curves (Fig. 2a-1 for µ = 0, Fig. 2a-2 for µ = 0.5) and dT /dp vs dimensionless potential, p, curves
(Fig. 2b-1 for µ = 0, Fig. 2b-2 for µ = 0.5) for AB-type adsorption systems obtained from analyti-
cal equations (solid lines) and simulations (�). D K D KA A B B/ /= in s–1/2 are: (1) diff, (2) 1.0,
(3) 0.1. For clarity, only selected curves and reduced number of simulation points are pre-
sented

a-2a-1

b-1 b-2



odic current steps) for the AB-type adsorption systems obtained from the
simulations (�) and analytical equations (solid lines). Figures 2a-1 and 2a-2
compare dimensionless chronopotentiometric curves (Fig. 2a-1 for µ = 0
and Fig. 2a-2 for µ = 0.5) obtained from the simulations (�) and analytical
equations (solid lines) (38), (39a), and (39b). Figures 2b-1 and 2b-2 compare
dimensionless CRDCP curves (Fig. 2b-1 for µ = 0 and Fig. 2b-2 for µ = 0.5).
The presented curves, generated by numerical differentiation of dimension-
less chronopotentiometric curves resulting from our simulations, were jux-
taposed with those obtained from the analytical equations (38), (39a), and
(39b). The five-point first-derivative approximation (fourth order O(h4),
central-difference approximation, see Table A.1, Appendix 1 in ref.16 for co-
efficients) was applied.

In Fig. 3, the dimensionless concentration profiles of A (solid lines) and B
species (dashed lines) reached during the first (cathodic) current step after
T = 0.1, 0.3, 0.5, 1.0 for a selected AB-type system are presented (Fig. 3a-1
for µ = 0 and Fig. 3a-2 for µ = 0.5).

Table II shows the comparison between the parameters for the dimension-
less chronopotentiometric and CRDCP curves obtained from the analytical
equations and simulations for the AB-type adsorption systems studied. In
Table II, Ry

j j−1, and ∆p j j, −1 are the ratio of the cathodic and anodic peak
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FIG. 3
Dimensionless concentration profiles for A (solid lines) and B species (dashed lines) reached
during first current step for selected AB-type adsorption system ( D K D KA A B B/ /= = 1.0s–1/2,
Fig. 3a-1 for µ = 0, Fig. 3a-2 for µ = 0.5) after T = 0.1, 0.3, 0.5, 1.0

a-2a-1



heights and the distance between the cathodic and anodic dimensionless
peak potentials, respectively. These two parameters are defined as follows3:

R y y jy
j j

c
j

a
j− −= =1 1 2 4 6, ,max ,min , , ... (45)

∆p p p jj j
a
j

c
j, ,min ,max , , ...− −= − =1 1 2 4 6 (46)

where y c
j−1,max and y a

j ,min are the cathodic and anodic dimensionless peak
heights, respectively, whereas pc

j−1,max and pa
j ,min are the cathodic and anodic

dimensionless peak potentials, respectively.

The A-Type Adsorption Systems ( ′KA ≠ 0, ′KB = 0)

As it was pointed out earlier, Eqs (39a) and (39b) can be applied only when
′ >Ki 0. This precondition certainly limits the applicability of these equa-

tions. It has its origin in the way the equations were originally solved, i.e.,
while introducing the dimensionless variable χi, it was assumed that the ad-
sorption constants must be positive (see Eq. (A.1) in Appendix A in Molina
et al.2). For example, in order to calculate C Tj

B , ( )0 there are three equations,
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TABLE II
Comparison of parameters of dimensionless chronopotentiometric and CRDCP curves for
AB-type adsorption systems obtained from digital simulations and analytical equations (in
parentheses) for the first cycle

D D

K
A

A

B

BK
= , s–1/2

Ω = µ = 0 Ω = µ = 0.5

τ 1 τ 2 Ry
1 2, ∆p 2 1, τ 1 τ 2 Ry

1 2, ∆p 2 1,

Diff 1.0001
(1.0000)

0.3334
(0.3333)

3.0007
(2.9976)

1.5423
(1.5316)

1.0001
(1.0000)

0.8729
(0.8728)

1.3516
(1.3513)

1.9473
(1.9406)

1.00 1.0000
(1.0000)

0.7188
(0.7188)

1.3857
(1.3835)

0.5172
(0.5113)

1.0000
(1.0000)

1.2351
(1.2351)

1.0747
(1.0751)

0.7465
(0.7408)

0.10 1.0000
(1.0000)

0.8912
(0.8912)

1.1177
(1.1166)

0.1774
(0.1786)

1.0000
(1.0000)

1.3977
(1.3977)

1.0218
(1.0218)

0.2674
(0.2693)

0.05 1.0000
(1.0000)

0.9207
(0.9207)

1.0817
(1.0818)

0.1275
(0.1280)

1.0000
(1.0000)

1.4255
(1.4255)

1.0155
(1.0151)

0.1961
(0.1945)

0.01 0.9999
(1.0000)

0.9630
(0.9631)

1.0366
(1.0362)

0.02966
(0.02968)

0.9999
(1.0000)

1.4652
(1.4653)

1.0065
(1.0065)

0.0893
(0.0896)



Eqs (39b), (41a), and (41b), that could, in principle, be used. However, none
of them can be used to study the B-type adsorption systems as ′KA is equal
exactly zero, and it cannot be artificially set at a positive, no matter how
small, value. In particular, Eqs (39b) and (41a) are not applicable here be-
cause they can only be used for positive values of ′KA (i.e., for the AB-type
adsorption systems), whereas Eq. (41b) can only be used when ′KB = 0 (by
definition, for the B-type adsorption systems, ′KB is positive). Another prob-
lem encountered when either the A- or B-type adsorption systems for which
µ > 0 are studied is related to the fact that it is not possible to use Eq. (42)
that allows to connect the parameter µ with the parameter Ω that was used
elsewhere3. Equation (42) can only be used when the parameter k, defined
according to Eq. (30), is positive. In other words, both ′KA and ′KB need to
be positive, and this precondition is never met by either the A- or B-type
adsorption systems. To be precise, Eqs (39a) and (41a) could be used for the
A-type adsorption systems but only when µ = 0. In practice, however, in
order to carry out the calculations for the A-type (as well as B-type) adsorp-
tion systems for any value of µ, it is necessary to assign a very small positive
value to the appropriate adsorption coefficient, ′ =Ki ε. Owing to the limit-
ing values of the H(x) function described by Eq. (11), the above approach
seems both sound and practical. In these studies, we carried out the analyti-
cal calculations for the A- and B-type adsorption systems with ε = 10–20. It
should be stressed that, when in our exploratory studies ε had been set at
an even lower value, the obtained results were virtually identical.

In Table III, the analytical-calculation parameters as well as the corre-
sponding simulation parameters are summarized. The only notable differ-
ence between the simulation parameters for the A- (Table III) and AB-type
adsorption systems (Table I) is that, for the latter, ′KB = 0.

In Fig. 4 are presented the dimensionless chronopotentiometric and
dimensionless CRDCP curves (the first cycle, i.e., the first cathodic and an-
odic current steps) for the A-type adsorption systems obtained from the
simulations (�) and analytical equations (solid lines). Figures 4a-1 and 4a-2
compare dimensionless chronopotentiometric curves (Fig. 4a-1 for µ = 0
and Fig. 4a-2 for µ = 0.5) obtained from the simulations (�) and analytical
equations (solid lines) (38), (39a), and (39b). Figures 4b-1 and 4b-2 compare
dimensionless CRDCP curves (Fig. 4b-1 for µ = 0 and Fig. 4b-2 for µ = 0.5).

In Table IV, the dimensionless chronopotentiometric and CRDC curve
parameters for the A-type adsorption systems (µ = 0 and µ = 0.5) obtained
from both the simulations and analytical equations are summarized.
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TABLE III
Analytical-calculation parameters and corresponding simulation parameters for A-type
adsorption systems

ZA = ZB = 3s–1/2

DA = DB

Ω = µ = 0 and µ = 0.5
d = 1 ′KB = 0

Simulation parameters

τ 1
ads

Eq. (22)
′KA

Eq. (27)
I
Eq. (23)

Diff 0.333333 0.000000 0.886227

1 0.779855 1.282290 2.073385

0.1 2.088585 4.787930 5.552882

0.05 2.889617 6.921333 7.682568

0.01 6.276829 15.931612 16.68808

DA

AK
, s–1/2

TABLE IV
Comparison of parameters of dimensionless chronopotentiometric and CRDCP curves for
A-type adsorption systems obtained from digital simulations and analytical equations (in
parentheses) for the first cycle

DA

AK
, s–1/2

Ω = µ = 0 µ = 0.5

τ 1 τ 2 Ry
1 2, ∆p 2 1, τ 1 τ 2 Ry

1 2, ∆p 2 1,

Diff 1.0001
(1.0000)

0.3334
(0.3333)

3.0007
(2.9976)

1.5423
(1.5316)

1.0001
(1.0000)

0.8729
(0.8728)

1.3516
(1.3513)

1.9473
(1.9406)

1.00 1.0000
(1.0000)

0.3334
(0.3333)

4.0728
(4.0732)

0.4273
(0.4271)

1.0000
(1.0000)

0.5245
(0.5245)

2.8540
(2.8542)

0.7829
(0.7808)

0.10 1.0000
(1.0000)

0.3334
(0.3333)

4.4349
(4.4352)

–0.0150
(–0.0148)

1.0000
(1.0000)

0.3984
(0.3984)

3.8888
(3.8884)

0.1423
(0.1434)

0.05 1.0000
(1.0000)

0.3334
(0.3333)

4.4922
(4.4918)

–0.08553
(–0.08556)

1.0000
(1.0000)

0.3797
(0.3796)

4.0839
(4.0844)

0.0309
(0.0314)

0.01 1.0000
(1.0000)

0.3334
(0.3333)

4.5710
(4.5706)

–0.1853
(–0.1855)

1.0000
(1.0000)

0.3542
(0.3542)

4.3747
(4.3749)

–0.1298
(–0.1305)



The B-Type Adsorption Systems ( ′KA = 0, ′KB ≠ 0)

For the B-type adsorption systems, the simulations were carried out only for
systems for which µ = 0 or µ = 0.1. Unlike for the AB- and A-type adsorption
systems, for which µ = 0.5, for the B-type adsorption systems this parameter
was set at a different value. This stems from the fact that for such systems
the anodic dimensionless transition time, τ2 , is extremely large in compari-
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FIG. 4
First cycle of cyclic chronopotentiometry and CRDCP. Comparison of potential–time response
curves (Fig. 4a-1 for µ = 0, Fig. 4a-2 for µ = 0.5) and dT /dp vs dimensionless potential, p, curves
(Fig. 4b-1 for µ = 0, Fig. 4b-2 for µ = 0.5) for A-type adsorption systems obtained from analyti-
cal equations (solid lines) and simulations (�). D KA A/ in s–1/2 are: (1) diff, (2) 1.0, (3) 0.1,
(4) 0.01. For clarity, only selected curves and reduced number of simulation points are presented

a-1 a-2

b-2b-1



son with the dimensionless cathodic transition time, τ1 . This is especially
true for large values of both ′KB and µ that lead to impractically time-
consuming simulations (see also Table 5 in Molina et al.3). Because for the
systems of this type the initial concentration of species B is greater than
zero (µ ≠ 0), both the measurements and simulations can be started from
the anodic step. Therefore, the B-type adsorption systems can be treated
analogously to their A-type counterparts (with µ′ = µ–1).

In Table V, the analytical-calculation parameters and the corresponding
simulation parameters are summarized.

In Fig. 5 are presented the dimensionless chronopotentiometric and
dimensionless CRDCP curves (the first cycle, i.e., the first cathodic and an-
odic current steps) for the B-type adsorption systems obtained from the
simulations (�) and analytical equations (solid lines). Figures 5a-1 and 5a-2
compare dimensionless chronopotentiometric curves (Fig. 5a-1 for µ = 0
and Fig. 5a-2 for µ = 0.1) obtained from the simulations (�) and analytical
equations (solid lines) (38), (39a), and (39b). Figures 5b-1 and 5b-2 compare
dimensionless CRDCP curves (Fig. 5b-1 for µ = 0 and Fig. 5b-2 for µ = 0.1).
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TABLE V
Analytical-calculation parameters and corresponding simulation parameters for B-type
adsorption systems

ZA = ZB = 3s–1/2

DA = DB

Ω = µ = 0 and µ = 0.1
d = 1 ′KA = 0

Simulation parameters

τ 1
ads

Eq. (22)
′KB

Eq. (28)
I
Eq. (23)

Diff 0.333333 0.000000 0.886227

1 0.333333 3.000000 0.886227

0.1 0.333333 30.00000 0.886227

0.05 0.333333 60.00000 0.886227

0.01 0.333333 300.0000 0.886227

DB

BK
, s–1/2



In Table VI, the parameters for the dimensionless chronopotentiometric
and CRDCP curves for the B-type adsorption systems (for µ = 0 and µ = 0.1)
obtained from both the analytical equations (38), (39a), and (39b), and simu-
lations are compared.
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FIG. 5
First cycle of cyclic chronopotentiometry and CRDCP. Comparison between potential–time re-
sponse curves (Fig. 5a-1 for µ = 0, Fig. 5a-2 for µ = 0.1) and dT /dp vs dimensionless potential,
p, curves (Fig. 5b-1 for µ = 0, Fig. 5b-2 for µ = 0.1) for B-type adsorption systems obtained
from analytical equations (solid lines) and simulations (�). D KB B/ in s–1/2 are: (1) diff, (2)
1.0, (3) 0.1, (4) 0.05, (5) 0.01. For clarity, only selected curves and reduced number of simula-
tion points are presented

b-1 b-2

a-2a-1



In Fig. 6, a comparison is made between the dimensionless chronopoten-
tiometric (Fig. 6a-1) and CRDCP (Fig. 6a-2) curves obtained from the ana-
lytical equations (38), (39a), and (39b), and simulations for the last, 25-th
step (j = 49, the last cathodic step and j = 50, the last anodic step) for a se-
lected AB- and B-type adsorption systems.

Finally, in Table VII, the total duration times , Ttotal (j = 50, Eq. (21)), for
the first 25 cycles of the cyclic chronopotentiometry experiments, obtained
from the simulations and analytical equations, for all types of adsorption
systems are summarized. Additionally, the corresponding values for a sys-
tem in which neither species A nor B undergoes adsorption (diff) are also
summarized.

The data presented above demonstrate that for the adsorption systems of
all types, there is an excellent match between the results derived from the
simulation scheme we proposed at the onset of this research and the ear-
lier, derived from the analytical equations, results reported by Molina et al.3

The agreement between the two sets of results encompasses not only the
chronopotentiometric-curve parameters (transition times) and CRDCP-
curve parameters (the ratio of the cathodic and anodic dimensionless peak
heights, Ry

j j−1, , and the distance between the cathodic and anodic
dimensionless peak potentials, ∆pj,j–1), but it also includes the shape of the
chronopotentiometric and CRDCP curves. From the data presented in
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TABLE VI
Comparison of parameters of dimensionless chronopotentiometric and CRDCP curves for
B-type adsorption systems obtained from digital simulations and analytical equations (in
parentheses) for the first cycle

DB

BK
, s–1/2

Ω = µ = 0 µ = 0.1

τ 1 τ 2 Ry
1 2, ∆p 2 1, τ 1 τ 2 Ry

1 2, ∆p 2 1,

Diff 1.0001
(1.0000)

0.3334
(0.3333)

3.0007
(2.9976)

1.5423
(1.5316)

1.0001
(1.0000)

0.4161
(0.4161)

2.5191
(2.5189)

1.5973
(1.5969)

1.00 1.0001
(1.0000)

0.8417
(0.8417)

0.8050
(0.8050)

1.2655
(1.2657)

1.0001
(1.0000)

1.2723
(1.2723)

0.6815
(0.6813)

1.1525
(1.1520)

0.10 1.0001
(1.0000)

0.9799
(0.9799)

0.6401
(0.6403)

1.2125
(1.2139)

1.0001
(1.0000)

0.45275
(0.45375)

0.2757
(0.2761)

1.8015
(1.8019)

0.05 1.0001
(1.0000)

0.9898
(0.9898)

0.6299
(0.6306)

1.2098
(1.2106)

1.0001
(1.0000)

7.9924
(7.9926)

0.1536
(0.1538)

2.1092
(2.1095)

0.01 1.0001
(1.0000)

0.9979
(0.9979)

0.6268
(0.6270)

1.2089
(1.2098)

1.0001
(1.0000)

35.3521
(35.3521)

0.0320
(0.0319)

2.6481
(2.6478)
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FIG. 6
Potential–time response curves (Fig. 6a-1) and CRDCP curves (Fig. 6a-2) (25-th cycle, j = 49 and
j = 50) for AB-type and B-type adsorption systems ( D Ki i/ = 1.0s–1/2, µ = 0) obtained from an-
alytical equations (solid lines) and simulations (� for AB-type and � for B-type adsorption sys-
tem)

a-1 a-2

TABLE VII
Duration times of the first 25 cycles in cyclic chronopotentiometry obtained from digital
simulations and analytical equations (in parentheses) for adsorption systems studied

D i

iK
, s–1/2

Total simulation time, Ttotal (j = 50)

AB (i = A and B) A (i = A) B (i = B)

µ = 0 µ = 0.5 µ = 0 µ = 0.5 µ = 0 µ = 0.5

1.00 40.2611
(40.2698)

63.9268
(63.9380)

15.9504
(15.9520)

26.3822
(26.3810)

55.8377
(55.8319)

69.4728
(69.4630)

0.10 46.4544
(46.4691)

70.4274
(70.4378)

9.9843
(9.9885)

12.9095
(12.9117)

69.9098
(69.9008)

129.3487
(129.3058)

0.05 47.4329
(47.4534)

71.5189
(71.5423)

9.0732
(9.0767)

11.0023
(11.0059)

71.1004
(71.0932)

171.4727
(171.4033)

0.01 48.8019
(48.8310)

73.0999
(73.1238)

7.8800
(7.8845)

8.6427
(8.6471)

72.1083
(72.0427)

439.9677
(439.7692)

Diff 22.4700
(22.4682)

48.7290
(48.7173)



Fig. 1a-2 that compare the dependence of the relative transition times, τ ref ,
on the current-step number, j, for the adsorption systems of AB-types with µ
= 0, it is apparent that both our simulations and Molina’s analytical equa-
tions lead to exactly the same results. The same holds true for the first and
second dimensionless transition times, τ1 and τ2 , compiled in Tables II, IV,
and VI. With Eq. (43) in mind, it can also be concluded that the
dimensionless transition times, τ j (for all the 50 current steps studied), are
also in perfect agreement. Although the values of the err function defined
by Eq. (44) increase steadily (Fig. 1a-1) with the additional current steps
taken, it can be noticed that, even at the end of the simulation, the err
function reaches an acceptable value (err ≈ –3). For all the systems studied,
we arrived at the first dimensionless transition time τ1 = 1.0000 ± 1.0 × 10–4

(it needs to be recalled here that for both the analytical equations and sim-
ulations, the time increment was set at δT = × −10 10 4. ). Not only does this
prove that the reference time scale, τ τ= 1

ads , was selected properly, but it
also validates the analytical equations introduced by Molina et al.2

The analysis of the chronopotentiometric curves presented in Figs 2a-1
and 2a-2 (for the AB-type systems), Figs 4a-1 and 4a-2 (for the A-type sys-
tem), and Figs 5a-1 and 5a-2 (for the B-type system) makes it possible to
conclude that our digital simulations faithfully reconstructed all the curves
for the first full cycle (comprising a cathodic and anodic step), for the ad-
sorption systems of all types. In Figs 2b-1 and 2b-2 (for the AB-type sys-
tems), Figs 4b-1 and 4b-2 (for the A-type systems), and Figs 5b-1 and 5b-2
(for the B-type systems) the CRDCP curves were compared and, as previ-
ously, the simulation and analytical results are in perfect agreement. In ad-
dition, in Tables II, IV, and VI, the CRDCP-curve parameters (i.e., the ratio
of the cathodic and anodic peak heights, Ry

1 2, , and the distance between the
cathodic and anodic dimensionless peak potentials, ∆p2,1) were compared.
The relative error (when the analytical values are considered to be equal to
the actual values) in calculating Ry

1 2, does not exceed 0.16% in any case,
whereas the absolute error in calculating ∆p2,1 never exceeds 0.0107 of the
p unit. Therefore, it is apparent that, in this case, the results obtained by
the two methods are very similar, indeed.

In order to demonstrate the applicability of our simulation scheme to the
study and analysis of multicyclic processes, the comparison was made (Fig. 6)
between the dimensionless chronopotentiometric (Fig. 6a-1) and CRDCP
curves (Fig. 6a-2) obtained for the last cycle studied (25-th cycle, i.e., j = 49,
the last cathodic step; and j = 50, the last anodic step). As it was the case for
the first cycle (vide supra), the curves obtained here were also very similar.
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In Table VII, the total duration times, Ttotal , for the first 25 chrono-
potentiometric cycles, equal to the sum of the first 50 dimensionless transi-
tion times as defined by Eq. (21), were compared. Again, the agreement
between the results derived from the digital simulations and analytical
equations is very good, i.e., in no case the relative error exceeds 0.1%.

In summary, the research presented herein focused on the application of
digital simulations to modeling cyclic chronopotentiometry and CRDCP for
systems in which reactant A and/or product B undergoes adsorption at a
planar electrode. Our findings are in perfect agreement with the previously
reported results that have been obtained from the analytical equations de-
scribing changes in the surface concentration of the electroactive species
during a multicyclic chronopotentiometric process2,3. Not only did we con-
firm the accuracy of the aforementioned analytical equations, but we also
demonstrated that our simulation scheme could be successfully applied to
studies of cyclic chronopotentiometry and CRDCP even in multicyclic sys-
tems. The simulation scheme we introduced can be easily adapted (after the
replacement of the constant dimensionless current, I , in Eq. (26), with ap-
propriate current–time function) to modeling cyclic chronopotentiometry
and CRDCP with programmed currents of any form without any restric-
tions imposed on values of the adsorption constants. In Fig. 7 are presented
the dimensionless chronopotentiometric and dimensionless CRDCP curves
for the AB-type adsorption system obtained from the simulations for the
most popular programmed currents, i.e., for an exponential current–time
function of the form

I T I Tj( ) exp( )= 0 ω (47)

and for a power current–time function of the form

I T I Tj
u( ) = 0 (48)

where I 0 is the dimensionless initial current for an exponential current–time
function and constant factor, which multiplies to Tj

u for a power–time func-
tion, ω and u are positive constants and Tj is the dimensionless time that
passed since the beginning of the j-th current step.

Figures 7a-1 and 7a-2 compare dimensionless chronopotentiometric
curves for several ω and u values (Fig. 7a-1 for the exponential current–time
functions and Fig. 7a-2 for the power–time functions) obtained from the
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simulations. Figures 7b-1 and 7b-2 compare dimensionless CRDCP curves
(Fig. 7b-1 for the exponential current–time functions, and Fig. 7b-2 for the
power–time functions).

Our flexible simulation scheme can be also modified and used to study
processes taking place at electrodes of different than planar geometries (i.e.,
spherical, cylindrical, microelectrodes, etc.). It can also be applied to the
study and analysis systems obeying other isotherms, such as the Langmuir
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FIG. 7
Programmed current chronopotentiometry. First cycle of cyclic chronopotentiometry and
CRDCP for exponential (Figs 7a-1 and 7b-1) and power–time current functions (Figs 7a-2 and
7b-2) for AB-type adsorption system ( D K D KA A B B/ /= = 1.0s–1/2, I 0 = π/2) obtained from
simulations for various ω (0.1–5.0) and u (0.5–5.0) parameters

a-2a-1

b-1 b-2



or Frumkin isotherm, which describe real-life systems more accurately.
Moreover, our simulation scheme can be successfully used to model cyclic
chronopotentiometry for adsorption systems in which the electrode process
is not fully reversible, i.e., for systems with any degree of reversibility of the
charge transfer step (i.e., quasi-reversible, quasi-irreversible, and irreversible
charge transfer). The studies in this area are ongoing and their results will
be reported in due course.

The author thanks Dr T. S. Fekner (Ohio State University) for interesting discussions and critical
remarks.

REFERENCES

1. Britz D.: Int. J. Electrochem. Sci. 2006, 1, 379; and references therein.
2. Molina A., Alcaraz M.-L., Saavedra F., Gonzáles J.: Electrochim. Acta 1998, 44, 1263.
3. Molina A., Gonzáles J., Saavedra F., Abrantes L. M.: Electrochim. Acta 1999, 45, 761.
4. Honeychurch M. J.: J. Electroanal. Chem. 1998, 445, 63.
5. Honeychurch M. J., Ridd M. J.: Electroanalysis 1995, 7, 1041.
6. Komorsky-Lovric S., Scholz F.: J. Electroanal. Chem. 1998, 445, 81.
7. Abrantes L. M., Gonzáles J., Molina A.: Electrochim. Acta 1999, 45, 457.
8. Molina A., Gonzáles J., Moreno M. M.: Electroanalysis 2002, 14, 281.
9. Gonzáles J., Molina A.: Langmuir 2001, 17, 5520.
10. Chen L., Wang Z., Lu X., Han W., Bi S.: Electrochim. Acta 2006, 51, 5548.
11. Wang J., Cai X., Wang J., Jonsson C., Palecek E.: Anal. Chem. 1995, 67, 4065.
12. Milner D. F., Weaver M. J.: Anal. Chim. Acta 1987, 198, 245.
13. Bi S., Yu J., Ye L., He B.: Instrum. Sci. Technol. 2000, 28, 303.
14. Bi S., Yu J., He B., Wang J., Qian H.: Instrum. Sci. Technol. 2001, 29, 17.
15. Bieniasz L. K., Britz D.: Pol. J. Chem. 2000, 78, 1195.
16. Britz D.: Digital Simulation in Electrochemistry, 3rd ed. Springer, Berlin 2005.
17. Koutecký J., Čižek J.: Collect. Czech. Chem. Commun. 1957, 22, 914.
18. Bieniasz L. K.: Comput. Chem. 1996, 20, 403.
19. Heinze J., Störzbach M., Mortensen J.: J. Electroanal. Chem. 1984, 165, 61.
20. Britz D., Heinze J., Mortensen J., Störzbach M.: J. Electroanal. Chem. 1988, 240, 27.

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 2, pp. 201–228

228 Fekner:

http://dx.doi.org/10.1016/S0013-4686(98)00230-8
http://dx.doi.org/10.1016/S0013-4686(99)00255-8
http://dx.doi.org/10.1016/S0022-0728(97)00531-7
http://dx.doi.org/10.1002/elan.1140071109
http://dx.doi.org/10.1016/S0022-0728(97)00569-X
http://dx.doi.org/10.1016/S0013-4686(99)00272-8
http://dx.doi.org/10.1002/1521-4109(200202)14:4<281::AID-ELAN281>3.0.CO;2-9
http://dx.doi.org/10.1021/la010256y
http://dx.doi.org/10.1016/j.electacta.2006.02.027
http://dx.doi.org/10.1021/ac00118a006
http://dx.doi.org/10.1016/S0003-2670(00)85025-4
http://dx.doi.org/10.1081/CI-100100979
http://dx.doi.org/10.1081/CI-100001404
http://dx.doi.org/10.1016/0097-8485(96)00003-4
http://dx.doi.org/10.1016/S0022-0728(84)80086-8
http://dx.doi.org/10.1016/0022-0728(88)80310-3

